On the equivalence of the operator and kernel methods for joint distributions of arbitrary variables
نویسنده
چکیده
1 Generalizing the concept of time-frequency representations, Cohen has recently proposed a general method, based on operator correspondence rules, for generating joint distributions of arbitrary variables. As an alternative to considering all such rules, which is a practical impossibility in general, Cohen has proposed the kernel method in which diierent distributions are generated from a xed rule via an arbitrary kernel. In this paper, we derive a simple but rather stringent necessary condition, on the underlying operators, for the kernel method (with the kernel functionally independent of the variables) to generate all bilinear distributions. Of the speciic pairs of variables that have been studied, essentially only time and frequency satisfy the condition; in particular, the important variables of time and scale do not. The results warrant further study for a systematic characterization of bilinear distributions in Cohen's method.
منابع مشابه
On the Equivalence of the Operator and Kernel Methods for Joint Distributions of Arbitrary Variables - Signal Processing, IEEE Transactions on
Generalizing the concept of time-frequency representations, Cohen has recently proposed a method, based on operator correspondence rules, for generating joint distributions of arbitrary variables. As an alternative to considering all such rules, which is a practical impossibility in general, Cohen has proposed the kernel method in which different distributions are generated from a fixed rule vi...
متن کاملA Limitation of the Kernel Methodfor Joint Distributions of Arbitrary
|Recently, Cohen has proposed a construction for joint distributions of arbitrary physical quantities , in direct generalization of joint time-frequency representations. Actually this method encompasses two approaches, one based on operator correspondences and one based on weighting kernels. The literature has emphasized the kernel method due to its ease of analysis; however, its simplicity com...
متن کاملComparison of the Gamma kernel and the orthogonal series methods of density estimation
The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...
متن کاملISAR Image Improvement Using STFT Kernel Width Optimization Based On Minimum Entropy Criterion
Nowadays, Radar systems have many applications and radar imaging is one of the most important of these applications. Inverse Synthetic Aperture Radar (ISAR) is used to form an image from moving targets. Conventional methods use Fourier transform to retrieve Doppler information. However, because of maneuvering of the target, the Doppler spectrum becomes time-varying and the image is blurred. Joi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 45 شماره
صفحات -
تاریخ انتشار 1997